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are examples of this type; see, e.g., the recent review paper
[12] for references. The disadvantage of front trackingIn this paper, a hybrid approach which combines the immersed

interface method with the level set approach is presented. The fast methods is that it requires explicit tracking of the front.
version of the immersed interface method is used to solve the This is, in general, difficult for interfaces with complicated
differential equations whose solutions and their derivatives may be geometry and topological change and particular so in three
discontinuous across the interfaces due to the discontinuity of the

dimensions. Front capturing, in particular, the level setcoefficients or/and singular sources along the interfaces. The mov-
method as derived by Osher and Sethian in [26], on theing interfaces then are updated using the newly developed fast level

set formulation which involves computation only inside some small other hand, avoids the explicit tracking of the front. The
tubes containing the interfaces. This method combines the advan- moving front is implicitly captured on an Eulerian grid.
tage of the two approaches and gives a second-order Eulerian dis- As a consequence, complex interface structures and topo-
cretization for interface problems. Several key steps in the imple-

logical changes can be captured quite naturally in two andmentation are addressed in detail. This new approach is then applied
three dimensions; see, e.g., [4, 26, 32, 33]. One difficultyto Hele–Shaw flow, an unstable flow involving two fluids with very

different viscosity. Q 1997 Academic Press associated with the conventional front capturing approach
is the possible loss of high order accuracy at the moving
front. This is especially the case for incompressible fluid

1. INTRODUCTION interfaces with surface tension [3, 4, 33], but also exists in
numerical methods using front tracking; see, e.g. [28, 36],

Many physically interesting problems involve propaga- where the effect of surface tension is modeled by a singu-
tion of moving interfaces. Vortex sheet rollup in hydro- lar delta function source term. The immersed interface
dynamic instability, wave interactions on the ocean’s free method developed by LeVeque and Li [15] attempts to
surface, solidification in crystal growth, and Hele–Shaw use a semi-Eulerian method to achieve a uniformly high
cells for pattern formation are some of the better known order accuracy up to the free surface, by incorporating the
examples. Typically, these interface problems are very sin- jump condition at the moving interface into the discretiza-
gular and are sensitive to small perturbations. Conse- tion. However, their method requires explicit information
quently, it is very challenging to obtain accurate and stable about the moving interface. This makes it difficult to apply
numerical approximations for these moving interface to general free boundary problems with complicated geom-
problems. etry or topology.

There are two basic numerical approaches to interface This paper attempts to combine the advantages of the
problems. One is based on front tracking, the other on immersed interface method and the level set approach.
front capturing. Both approaches have their advantages This gives rise to a completely Eulerian front capturing
and disadvantages. In front tracking methods, one can de- method with uniformly high order accuracy up to the mov-
sign accurate approximations to the moving front without ing interface. The main idea is as follows. For fluid interface
differentiating across the front. Boundary integral methods problems, surface tension introduces a jump condition in

the pressure and/or its normal derivative across the moving
interface. If we incorporate these jump conditions in our1 This work was supported by URI ARPA-ONE Grant N00014092-J-

1890, NSF Grants DMS-94-04942, DMS-94-07030, and DMS-96-26703, finite difference discretization across the moving interface,
and DOE Grant DE-FG03-89ER25073. we can derive a uniformly high order discretization up to
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mersed interface/level set method proposed in this paper, of our finite difference discretization and the way in which
we will use an Eulerian level set function to capture the the discretization is modified near the interface. However,
interface. The information regarding the location and the we show that when the physical solution is well resolved,
local normal vector can be extracted from this level set the grid effect is almost negligible.
function. When we incorporate this information into the There are two advantages of our hybrid method. The
immersed interface discretization, we obtain a uniformly first one is that it gives an Eulerian discretization that is
high order discretization. Clearly we get the advantages of uniformly second-order accurate up to the moving inter-
both methods and avoid the shortcomings of these two face. The second advantage is that the method is very fast.
methods. This gives rise to a robust and accurate Eulerian The improvement in speed is due to two factors. The first
discretization for interface problems. one is due to a fast version of the level set method [39].

In order to test the robustness of the method, we apply In this version of the level set method, only a small region
our method to compute the expanding Hele–Shaw bubble containing the moving interface need to be updated in
problem. In this problem, a less viscous and immiscible time. This basically reduces the number of operations to
fluid is injected into a more viscous flow. This is an im- O(N), where N is the number of grid points along the
portant test problem because it can be used as a model to moving interface. The second factor is more crucial. A
study pattern formation in crystal growth and solidification. preconditioned fast immersed interface method [20] is used
This is a very challenging numerical problem due to the in discretizing the pressure equation. This effectively re-
underlying Mullins–Sekerka instability. Small perturba- duces the discrete pressure equation to a discrete Poisson
tions, even at the level of round-off errors, can lead to rapid equation. Thus a standard fast Poisson solver can be used
growth for those unstable modes in high wave numbers, to speed up the calculation. The operation count is only
especially for the case of small surface tension. For this of order O(M 2), where M is the number of Eulerian grid
reason, it is essential to have a stable numerical discretiza-

points in each dimension. This gives a much faster method
tion. In the case of boundary integral calculations, a Fou-

than solving the original pressure equation with discontinu-rier filtering technique has been used to control the artifi-
ous coefficients and large jumps.cial growth of the round-off errors [7, 13, 14]. In the case

The rest of the paper is organized as follows. In Sec-of level set methods, we use a re-initialization process to
tion 2, we describe the immersed interface method and itsremove the high frequency instability. This re-initialization
fast version developed recently. In Section 3, we describeprocess was first introduced by Sussman, Smereka, and
the level set method and its fast version. The question ofOsher in [33] to maintain the level set function as a signed
how to reconstruct the interface from a level set functiondistance function. It plays the role of geometrical regular-
will be discussed in detail. Section 4 presents our hybridization. In effect, it produces a cutoff to high frequency
method to the Hele–Shaw problem. Some numerical is-noise. We have performed a careful numerical study and
sues, such as re-initialization of the level set function andhave not observed any numerical instability of our method
smooth extension of the interface velocity outside the inter-as we refine the mesh. On the other hand, the re-initializa-
face will be discussed. We present detailed numerical ex-tion process as well as the basic finite difference approxima-
periments in Section 5. We give a concluding remark intion to the level set motion must introduce some numerical
Section 6.dissipation. This also places a limitation to the resolution

of the smallest scales in the physical problem. In our nu-
merical study, we have performed a careful resolution 2. THE IMMERSED INTERFACE METHOD
study to quantify the relationship between the effect of
numerical dissipation and the effect of surface tension. In this section, we will review the main idea of the im-

mersed interface method originally developed by LeVequeOur numerical experiments also suggest that while high
frequency noise has been damped by numerical dissipation, and Li in [15, 19]. The immersed interface method provides

an effective discretization for differential equations withnumerical noise at low frequency components still persists.
This numerical noise is more difficult to filter than the high discontinuous coefficients or singular source terms across

a free interface. Due to the discontinuity or singular sourcefrequency noise since it is mixed with the low frequency
components. For small surface tension, there are many term in the equation, the solution and/or its derivatives

may become discontinuous across the interface. The mainunstable modes. In this case, the low frequency noise due
to roundoff errors will produce un-symmetric patterns in idea is to incorporate the known jump conditions in the

solution and its derivatives, e.g., the flux across the inter-long time numerical simulations, even if we start with a
symmetric initial configuration. This seems to be consistent face, into the finite difference scheme. This gives rise to a

modified scheme on a Cartesian grid. Numerical tests havewith experimental observations. As is common to most
grid-based methods, we also observe some grid effect for shown that solutions obtained from this method are sec-

ond-order accurate at all points as long as the interfacelong time calculations. This is due to the nonlinear nature
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remains smooth. This approach has also been applied to 2.1. The Fast Immersed Interface Method for Elliptic
Equations with Piecewise Constant Coefficientsthree-dimensional elliptic equations [22], parabolic equa-

tions [21, 23], hyperbolic wave equations with discontinu-
The main idea of the fast immersed interface method is

ous coefficients [17], and incompressible Stokes flow prob-
to precondition the differential equation before applying

lems with moving interfaces [16, 18].
the immersed interface method. An intermediate unknown

As a brief example to show how the immersed interface
function, which describes the jump in the normal derivative

method works, we consider a Poisson equation
across the interface, is introduced. The discretization is
equivalent to using a second order difference scheme for
the regular grid points in the region, and a second orderDu 5 E

G
C(s)d(x 2 X(s))d(y 2 Y(s)) ds, (x, y) [ V,

discretization for a Neumann like interface boundary con-(2.1)
dition. The resulting discretization satisfies the maximum
principle, and the solution is second order accurate globally

with given boundary conditions on the boundary V, where based on conventional analysis [25]. Below we explain the
(X(s), Y(s)) is the arc length parameterization of the inter- main idea by considering the following elliptic interface
face G. With the immersed interface method, the problem problem.
can be written as

PROBLEM I.
Du 5 0, (x, y) [ V 2 G, (2.2)

=(b(x, y)=u) 5 f (x, y), (2.6a)[u] 5 0, [un] 5 C(s), (2.3)
given BC on V, (2.6b)

where [u] and [un] are the jumps of the solution and its
normal derivative across the interface G, respectively. The with specified jump conditions along the interface G(s)
discrete form of (2.1) is simply the standard five-point
scheme plus a correction term at irregular grid points where [u] 5 w(s), (2.7a)
the interface cuts through the five-point stencil,

[bun] 5 v(s), (2.7b)

Ui11, j 1 Ui21, j 1 Ui, j11 1 Ui, j21 2 4Uij

h2 5 fij 1 Cij . (2.4) where s is the arc length of the interface.

With the original immersed interface method, we are
Thus a fast Poisson solver such as a fast Fourier transforma- able to derive a difference scheme for which the local
tion method (FFT), cyclic reduction, etc. (see [34]) can be truncation error is O(h2) away from the interface, and
employed if the solution domain is a rectangle. O(h) near the interface, with a six-point stencil. However,

Solving an elliptic equation in the form if the jump in the coefficient b is very large as in the case
of the Hele–Shaw flow, the difference scheme may lose

=(b(x, y)=u) 5 f (x, y), (2.5) the sign property required for the maximum principle be-
cause the scheme has to be modified to satisfy the flux
condition (2.7b). On the other hand, if we can use thewhere the coefficient b is discontinuous across the inter-
jump condition in the normal derivative [un], which is anface(s), is a major part in many computational fluid dynam-
unknown in Problem I, then the modified differenceics problems (see [4, 11, 33] etc.), It is also one of the two
scheme will satisfy the maximum principle. Thus we con-governing equations in the simulation of Hele–Shaw flow
sider the solution ug(x, y) of the following problem, which(see Section 4). For the Hele–Shaw flow, the solutions itself
depends on a newly introduced function g(s) describingis discontinuous across the interface which corresponds to
the jump in the normal derivative.a dipole source along the interface. Equation (2.5) is only

valid in the interior of the domain, but not on the interface. PROBLEM II.
To solve Eq. (2.5), we cannot use a fast Poisson solver
with the original immersed interface even if b is a piecewise
constant. Thus better iterative methods are sought to solve
the linear system of equations resulting from the discretiza-

Du 1
=b1

b1
? =u 5

f
b1

, if x [ V1,

Du 1
=b2

b2
? =u 5

f
b2

, if x [ V2, (2.8a)
tion of the immersed interface method. One such method
is the multigrid method developed by Adams [2]. The
approach used here is based on a preconditioning approach
[20]. We will briefly discuss it in the following. given BC on V, (2.8b)
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with specified jump conditions This is a much smaller linear system compared to the one
for U. The coefficient matrix is the Schur complement of

[u] 5 w(s), (2.9a) D in (2.12). In practice, the matrices A, B, ..., and the
vectors V, F are never explicitly formed. The matrix and[un] 5 g(s). (2.9b)
vector are written above merely for theoretical purposes.
Thus an iterative method, such as GMRES iteration [30],Notice that the jump conditions (2.9a) and (2.9b) depend
is preferred. With this approach, the number of iterationson the singularities of the source term f (x, y) along the
for solving the Schur complement system of (2.13) is inde-interface. For example, if f (x, y) contains the Dirac delta
pendent of the jump [b] and the mesh size h. The detailsfunction distribution along the interface, then the source
of the algorithms can be found in our recent work [20] forstrength will contribute to the jump in the normal deriva-
piecewise constant b, where we can take advantage of fasttive across the interface. However, in the expression of
Poisson solvers. For variable coefficients, we plan to use(2.8a), we do not need information about f (x, y) on the
the multigrid method developed by Adams [2].interface G, so there is no need to write f (x, y) differently.

Let the solution of Problem I be u*(x, y), and define
3. THE LEVEL SET METHOD

g*(s) 5 [u*n ](s) (2.10)
Once we obtain a second-order discretization of the in-

terface problem in space, we need to update the inter-along the interface G. Then u*(x, y) satisfies the elliptic
face in time. Three possible numerical algorithms are theequation (2.8a)–(2.8b) and the jump conditions (2.9a)–
‘‘volume of fluid’’ technique, the marker particle approach,(2.9b) with g(s) ; g*(s). In other words, ug*(x, y) ; u*(x,
and the level set formulation. The level set formulationy), and
originating in [26] is the one we will use in this paper.

We will concentrate on the two-phase flow problemsFb
ug*

n G5 v(s) (2.11) here, although similar techniques can be, and actually have
been, applied to multiphase problems [38]. Suppose there
is a closed interface separates the less viscous flow fromis satisfied. Therefore, solving Problem I is equivalent to
more viscous one. Let G(t) be the moving interface, V2(t)finding the corresponding g*(s) and then ug*(x, y) in Prob-
and V1(t) be the interior and exterior regions of the inter-lem II. Notice that g*(s) is only defined along the interface.
face respectively. The moving interface G(t) can be de-Thus it is defined in a space one dimension lower than
scribed as the zero level set of a function w(x, y, t), whichthat of u(x, y).
is Lipschitz continuous, satisfyingFor simplicity, consider the special case where b is a

piecewise constant. Now we have =b2 5 0 and =b1 5 0.
w(x, y, t) . 0 for (x, y) [ V2, (3.14a)It is very easy to discretize Problem II using the immersed

interface method. We have the standard discrete Laplacian w(x, y, t) 5 0 for (x, y) [ G, (3.14b)
operator for Du plus some correction terms. The correction

w(x, y, t) , 0 for (x, y) [ V1. (3.14c)terms are the functions of the jumps [u], [ux], [uy], [uxx],
[uyy], which are all known if we know [u] and [un] along

Therefore, by differentiating the level set w(x, y, t) 5 cthe interface. The jump condition (2.7b) then is discretized
with respect to time t, we can obtain the equation of motionusing our new technique called the weighted least squares
of the level setinterpolation [20], which is very robust and second-order

accurate for interface problems. Thus the discrete form of
wt 1 u ? =w 5 0. (3.15)our approach can be written as the following linear system,

This is referred to as the level set equation of Hamilton–FA B

E D
G FU

G
G5 FF

V
G . (2.12) Jacobi type. Initially, w(x, y, 0) is often chosen as the signed

normal distance from the interface which means u=wu 5 1.
By solving the modified Hamilton–Jacobi equation, weThe solution U and G are the discrete form of the solution
can update the moving interface, the zero level set of w(x,ug*(x, y) and g*(s), the solution of Problem II which satis-
y, t) 5 0.fies (2.11). Eliminating U from (2.12) gives a linear system

for G 3.1. Reconstruction of the Interface from the Level
Set Function(D 2 EA21 B)G 5 V 2 EA21 F

(2.13) In the level set representation, the interface, which is
the set of points (x, y) satisfying w(x, y) 5 0, is not explicitly5

def
V.
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where a is determined from the following quadratic
equation:

w(X) 1 i= ? wi a 1 As (pT He(w)p) a2 5 0, (3.18)

where He(w) is the Hessian matrix of w,

He(w) 5 Fwxx wxy

wyx wyy

G , (3.19)

evaluated at X.

If we repeat this process for each irregular grid point
FIG. 1. Finding the control point X* from an irregular grid point on the side of w(x, y) # 0, we can get the set of control

(xi , yj ), w(xi , yj ) # 0.
points representing the interface with second-order accu-
racy. To use the fast immersed interface method we still
need to compute the normals, tangents, and curvatures on
the interface, or at the control points. This can be donegiven.1 Instead we only have information w(xi , yj) at each
using the level set information again. For example, thegrid point. In order to use the fast immersed interface
unit normal, the unit tangent, and the curvature at a pointmethod [20], we need to find a number of control points
can be expressed ason the interface so that we can set up equations for the

intermediate unknowns [un]. There are two criteria in
choosing those control points: n 5 2

= ? w

i= ? wi
5 2 F wx

Ïw2
x 1 w2

y

,
wy

Ïw2
x 1 w2

y
GT

, (3.20)

• We want the process to be local. One of the advantages
of the level set approach is that the geometric characteris-

t 5 F2
wy

Ïw2
x 1 w2

y

,
wx

Ïw2
x 1 w2

y
GT

, (3.21)tics of the interface are completely determined by the level
set function w(xi , yj). We need to preserve such local prop-
erties in determining the control points.

k 5 2
wxxw2

y 2 2wxywx wy 1 wyyw2
x

(w2
x 1 w2

y)3/2 5 2 = ?S =w

i= ? wiD . (3.22)
• We do not want to have clustered control points to

avoid unnecessary large and ill-conditioned system (2.13).
To get these quantities, we need to find accurate values

We now describe a practical reconstruction process which of w, wx , wy , wxx , wxy , and wyy at some point on the interface
meets the requirements above. which may not lie on a grid point. This can be done through

Consider an irregular grid point X 5 (xi , yj ), where the bilinear interpolation described below. Note that at a
the interface cuts through the standard five point stencil grid point, the information can be calculated through cen-
centered at (xi , yj ), on a particular side, say w(x, y) # 0. tral difference approximations unless there is a singularity
Using the following process, we can find the projection on of w in the neighborhood of that grid point (see Fig. 2).
the interface (Fig. 1):

1. Find the unit steepest ascent direction p at X

p 5
= ? w

i= ? wi
. (3.16)

2. Locate the projection of X on the interface along the
direction p:

X* 5 X 1 ap, (3.17)

1 We will omit the time dependence of the level set function w(x, y, t)
for simplicity if no confusion occurs. FIG. 2. A diagram for the bilinear interpolation.
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Given any point (x, y), we can find the square which duce a tube along the moving interface and just compute
the level set function inside the tube [1, 39]. This is alsocontains the point (x, y) but no other grid points except

the four vertices, say, (xi , yj ), (xi11 , yj), (xi , yj11), and (xi11 , the approach used in this paper.
When the traditional level set method is used to captureyj11 ). Let Gij be a grid function which approximates one

of the quantities, such as wx , wy , etc., in (3.20)–(3.22). the moving interfaces in simulations of fluid dynamics
problems, some difficulties may occur.We can use the following bilinear interpolation to get an

approximation of G(x, y),
• It may be expensive to extend the normal velocity

field, which is often only physically meaningful at the inter-
G(x, y) 5

1
4 O1

k50,l50
Gi1k, j1l xk yl , (3.23) face, to the whole domain. This is true especially when

global quantities are used to determine the normal velocity
at the interface or when the normal velocity field is singular.

where These two scenarios actually occur in our Hele–Shaw ex-
ample. A simple method to extend the normal velocity off
the interface can be found in [5].xk 5 1 1 (2k 2 1) S2(x 2 xi)

h
2 1D,

• In the classical level set method, we need to calculate
w at all grid points, which involves an extra unnecessary

yl 5 1 1 (2l 2 1) S2(y 2 yj)
h

2 1D. order of magnitude of calculation.

Both these difficulties can be very well addressed by the
Using the bilinear interpolation formula described above, fast localization technique introduced in [39] and details
we can evaluate all the quantities in (3.20)–(3.22) at any can be found there. The whole computation for the level
point in terms of the corresponding values at neighboring set method is now only done in a very narrow tube around
grid points. the moving interface. The size of the tube is fixed and can

be just a few grid cells wide. The whole process is very
3.2. Re-initialization simple and intuitive mathematically. It is composed of the

following three steps at each time level (without loss ofInitially, w(x, y, 0) is often chosen as the signed normal
generality, here, we suppose that the initial level set func-distance from the interface which means u=wu 5 1. By
tion is a signed distance to the interface):solving the modified Hamilton–Jacobi equation, we can

update the moving interface, the zero level set of w(x, 1. Update the level set function in a tube of width
y, t) 5 0. However, while Eq. (3.15) will move the interface «1 . 0 by the evolution PDE for the level set function
at the correct speed, w in general is no longer a distance
function. In fact, w develops steep or flat gradients, espe-

wt 1 u ? =w 5 0.
cially when topological changes such as breaking and merg-
ing take place, or when the velocity field near the interface

In the tube, u is defined and u ? n is continuous.is singular. This difficulty can be avoided by a re-initializa-
2. Construct a new tube of width «2 . «1 around thetion process introduced in [32, 33] so that w will remain as

new interface (zero level set of the updated level set func-the signed distance function up to a certain accuracy. The
tion) by correctly adding and deleting grid points followingnew level set function w is the steady state solution of
the moving direction of the interface.the equations

3. Re-initialize the level set function in the new «2 tube
wt 1 (u=wu 2 1)H(w) 5 0, (3.24) by solving the nonlinear partial differential equation

where H(w) is any smooth monotone increasing function
wt 1 sign(w)(u=wu 2 1) 5 0 (3.25)

of w with H(0) 5 0. ENO schemes may be used to approxi-
mate the Hamilton–Jacobi equation efficiently [26, 27].

to a steady state with the evolution procedure. The updatedThe re-initialization process also has the effect of stabiliz-
level set function will be a good approximation to theing the high frequency noise. We will comment on this in
signed distance function; see [33, 38].detail in the numerical section.

This localization technique involves an upwind scheme
3.3. Updating the Interface by the Localized Level

which requires only one boundary condition. However,
Set Method

with the tube approach, the boundary of the old tube is no
longer needed. Thus an explicit tube boundary condition,Another issue related to the level set approach is to

reduce the computational cost. A natural way is to intro- which can be very difficult to prescribe and may also affect
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the computation, is avoided. Also any discontinuities at it is incompressible. The amalgamated surface tension2

parameter with the dimension of length is definedthe edge of the tube do not affect the computation in the
tube; see [39, 40]. This method works easily even in the
presence of topological changes.

d0 5
2tfb1

f
, (4.32)

4. THE HYBRID METHOD FOR HELE–SHAW FLOW
where f is the injection rate.

Linearization about a Hele–Shaw cell with radius R(t)In this section, we apply our hybrid immersed interface/
and injection rate f gives the instantaneous growth ratelevel set method to the Hele–Shaw flow. A number of
(see [7, 13]):technical implementation issues will be discussed in detail.

In 1958, Saffman and Taylor [31] performed experiments
replacing a viscous fluid from between two closely spaced,

sk(t) 5
1

R2(t)S(k 2 1)
f

2f
2

d0

R(t)
(k 2 1)k(k 1 1)D . (4.33)

parallel plates with a less viscous fluid. The shape of the
interface is well known to exhibit a fingering phenomenon.
The velocity field u 5 (u, v) of the flow is proportional to For a constant injection rate, we obtain a Mullins–Sekerka
the gradient of the pressure p. The governing equations are type instability, which shows the competition between the

destabilizing effect due to the injection and the stabilizing
effect due to the surface tension.

u 5 2b=p, (4.26)
Note that, for high frequency modes, sk(t) is negative,

indicating that the Hele–Shaw flow is stable for these fre-= ? u 5 f, (4.27)
quencies. For lower frequencies, depending on the parame-
ters, sk(t) can be positive, indicating unstable growth. Usu-

with b 5 b2/(12e), where b is the gap width and e is the ally it is relatively easier to control high frequency noise.
viscosity, which is very different inside and outside the But it is more difficult to control the roundoff errors of
interface separating the two fluids. The source term f is low to intermediate frequencies.
the result of the injection of the less viscous fluid into the The numerical simulation of the Hele–Shaw flow has
Hele–Shaw cell. In our tests, we set attracted a lot of attention and served as a benchmark

problem for numerical algorithms to compute unstable
fronts [6–8, 13, 24, 29, 35, 37]. This is an ideal test model
for our proposed algorithm since (4.26) can be written asf 5 Hf0(r0)(1 1 cos(rf/r0)), if r # r0 ,

0, if r . r0 ,
(4.28)

=(b=p) 5 2f. (4.34)

where r 5 Ïx2 1 y2. The total injection rate is To determine the boundary condition on the pressure, we
assume that the interface is far away from the boundary
so that the flow at the boundary agrees with the radial

f 5 E E f(x, y) dx dy 5 f0(r0) Sf 2
4
fD r 2

0 . (4.29) outflow which would arise from the source term in a uni-
form fluid; i.e.,

Specifically, if f0(r0) 5 1/r 2
0 , then we will have a single p(x, y) 5 p0 2

f0

2fb
log r (4.35)

point source at the origin as r0 approaches zero. The jump
conditions across the interface are

is specified on the boundary, where p0 is some arbitrary
constant. In the numerical tests, we found that the bound-

[p] 5 tk, the Laplace–Young condition, (4.30) ary condition has little effect on the motion of the interface
until the interface gets very close to the boundary.[bpn ] 5 0, the kinematic interface condition, (4.31)

4.1. Computing the Velocity Field near the Interface
where t is the surface tension and k is the curvature of

When we solve the modified Hamilton–Jacobi equation
the interface.

to update the level set w, we need to compute the velocity
Following the discussion of [7], we assume the less vis-

cous fluid inside the Hele–Shaw cell has a negligible viscos-
ity while the more viscous fluid has a finite viscosity and 2 This is similar to the Atwood ratio described in [35].
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1. Find the two closest control points Xk and Xk11 from
the irregular grid point (xi , yj). We know the normal veloc-
ity at these two control points after we have solved the
pressure using the immersed interface method.

2. Find a regular grid point, say (xi0 , yj0 ), which is close
to (xi , yj ), Xk , and Xk11 on the same side of the interface
as the irregular grid point. The normal velocity at this
point can be calculated by the central difference scheme
using (4.37).

3. Interpolate the normal velocity at the three points to
get an approximation at the irregular grid point (xi , yj ),

FIG. 3. Diagram of an irregular grid point and the choice of three un(xi , yj ) 5 a1 un(xi0 , yj0 ) 1 a2un(Xk , Yk)
points for interpolating the normal velocity.

1 a3un(Xk11 , Yk11 ),

field from the pressure. The velocity field can be given where a1 , a2 , and a3 is the solution of the following lin-
either in the component form in the x and y directions or ear system:
u ? n, the normal velocity of the level set. With the fast
immersed interface method, we have the normal deriva-

a1 1 a2 1 a3 5 1,tives p1
n and p2

n at control points (Xk , Yk) once the pressure
p is computed. We also know the normal velocity at each a1(xi 2 xi0 ) 1 a2(xi 2 Xk ) 1 a3(xi 2 Xk11 ) 5 0,
control point, which is

a1(yj 2 yj0 ) 1 a2(yk 2 Yk) 1 a3(yj 2 Yk11 ) 5 0.

un 5 2bpn . (4.36)
This is a second-order interpolation scheme.

Note that bpn is continuous, so it does not matter which 4.1.2. Extending the Velocity Inside the Hele–Shaw
side the quantity is taken from. If a grid point happens to Cell. The algorithm described above for computing the
be on the interface, we can use (4.36) directly. For other normal velocity is successful for the irregular grid points
grid points in the small tube of the interface, we use outside of the Hele–Shaw cell, but it does not work well
different methods to calculate the normal velocity inside for those grid points inside the Hele–Shaw cell. This can
and outside the Hele–Shaw bubble. Another possible be explained as follows: Compared to the solution domain,
way to extend the normal velocity off the front can be the size of the Hele–Shaw cell is very small, especially at
found in [5]. the beginning. The potential corresponding to a single

point source or a small mass of sources is4.1.1. Interpolating the Normal Velocity Outside the
Hele–Shaw Cell. At a regular grid point, which the stan-
dard five-point stencil does not cut through, the normal

p(r) p
log(r)

2f
, r 5 Ïx 2 1 y 2,velocity can be computed from

un 5 2bpn 5 2b=p ? n, (4.37) assuming that the source centers at the origin. So the nor-
mal derivative pn inside the Hele–Shaw bubble is nearly
singular. On the other hand, from the flux conditionwhere n is the unit normal direction and =p can be com-

puted from the standard central difference scheme.
At an irregular grid point, say, (xi , yj) in Fig. 3, care has b1p1

n 2 b2p2
n 5 0,

to be taken to compute un. If the grid point happens to
be a control point (Xk , Yk), then we know the normal
velocity from (4.36) already. we also conclude that up2

n u is very small compared to p1
n

since b2 @ b1. Thus the normal derivative pn changes veryIf the irregular grid point is not a control point, the
following approach is used to find the normal velocity of rapidly inside the Hele–Shaw bubble which makes the

computation very difficult even at regular grid points.the level set function at this grid point:
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The solution to this difficulty is to extend the normal In our numerical calculations, we do not perform the
re-initialization process at every time step. Instead, wevelocity from the information on the interface, which is

known once we have solved for the pressure. A simple carry out the re-initialization process after every 10–20
time steps using Eq. (3.25) at the grid points (i, j) in theextension is
«2 tube if uw(i, j)u . h, where h is the grid size. The level
set function w is replaced by an approximation to the signed
distance function in the new «2 tube. This process removes
the stiffness at the tube boundary due to our local levelun(x) 5 5

un(xp)
2 S1 1 cos Sfdx,xp

a DD, if dx,xp
# a,

0, otherwise,

(4.38)
set method, and it also removes high frequency noise. Such
a process seems to be optimal in the sense that it will give
better resolution with the least time; see Section 5.4. We
also perform the re-initialization process at points in thewhere xp is the projection of x on the interface and dx,xp «2 tube after a long time period, for example, every 100is the distance between x and xp . Since the Hele–Shaw
iterations. Now the instability or oscillations caused by thebubble is expanding outwards and we only need a few
high order Poisson solver (for the pressure) at the interfacevalues of un inside a small tube containing the interface.
are eliminated by the numerical dissipation.The value a is chosen between 4 h and 6 h.

We have observed in our numerical experiments that
for well-posed or stable problems, or for Hele–Shaw simu-4.2. Re-initialization Revisited
lation with larger surface tension, it does not make much

Initially, the level set function w(x, y) is often chosen difference how often we perform the re-initialization pro-
as the signed distance from the interface which means cess; see Figs. 7a, b and Figs. 9a, b. Note that the level set
u=wu 5 1. However, while Eq. (3.15) will move the interface procedure itself imposes a ‘‘topological’’ regularization on
(the level set w 5 0) at the correct speed, w will, in general, unstable problems (see [10, 11]). However, for very unsta-
no longer be a distance function. A re-initialization process ble problems, which are sensitive to the parameters and
is often necessary to keep w as the signed distance function roundoff errors, the different re-initialization process will
near the front within a certain accuracy, especially when affect the computational results, including the location of
the velocity field is singular at the front. the interface, the area, etc. (see Figs. 7c, d, Figs. 9c, d, and

For the fast level set method in which we only update the next section for more discussion). A proper choice of
the level set in a narrow tube, there is a discontinuity along the re-initialization process improves our numerical re-
the boundary of the tube. Such a discontinuity will remain sults.
if there is no re-initialization process. The level set method
would break down once the interface is close enough to 5. NUMERICAL EXPERIMENTS OF
the tube boundary. This is another reason we need to use HELE–SHAW FLOW3

a re-initialization process.
High order accurate methods are generally less stable. We have done a number of numerical experiments with

For interface problems such as Hele–Shaw flow, the solu- different initial interfaces, viscosities, and surface tensions.
tion is not smooth or even discontinuous. For example, All the results seem to agree with the theoretical analysis
the pressure in the Hele–Shaw flow is discontinuous across and numerical results in the literature. Since the Hele–
the interface. For these problems, straightforward discret- Shaw flow is unstable for long time computations, the re-
izations may introduce high frequency numerical instabilit- sults do not converge to a unique solution due to the
ies; see, e.g., [7, 12, 13]. This instability can be controlled roundoff and the discretization errors. This is consistent
by using some kind of filtering; see [13]. In our method with experiments in which different shapes are observed
we introduce numerical dissipation or numerical viscosity. after some time. However, this should not invalidate our
We use a second-order essentially nonoscillatory (ENO) simulations because we still can predict roughly the shape
scheme in solving the modified Hamilton–Jacobi equation and location of the interface as time evolves. Moreover,
to preserve the sharp interfaces (corners or cusps). The for a short time period, the solution does converge and
effect of our numerical dissipation is of second order and the computational result is independent of the grid. The
is grid size dependent. Its effect on low frequency modes crucial parameter which affects the stability is the amal-
is very small. For the Hele–Shaw flow, the unstable modes gamated surface tension d0 , defined in (4.32). The smaller
are low frequencies. So our method has good resolution the d0 , the more unstable the Hele–Shaw flow. Below we
and accuracy when the physical viscosity is not too small. present some results and analysis.
But if the physical viscosity is significantly smaller than the
grid size, then our method will not be able to resolve the
real physical phenomena; see also Section 5.3. 3 A short movie of the animation is available upon the request.
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TABLE I5.1. A Benchmark Problem

Grid Refinement Analysis in the Infinity Norm,If the initial interface is a circle, there is only a single
t0 5 0, tout 5 0.1mode k 5 1 in the linear stability analysis (4.33). We can

construct an exact solution for this axi-symmetric flow cor- n E n
p Rate

responding to a known source term (see Fig. 4). We use
40 2.4230 3 1023this exact solution to check if our method works properly.
80 7.8189 3 1024 1.6318Let the pressure be given

160 1.4923 3 1024 2.3894
320 3.7564 3 1025 1.9901

Note. The parameters are: V0 5 0.25, b1 5 1, b2 5 100, a 5 0.1,
d0 P 2.5 3 1023.

p(r) 55
V0

b2 S2r 3

3a2 2
3r 2

2aD1 C1 , if 0 # r # a,

2
V0 a
b2

log(r) 1 C0 , if a , r # rG ,

2
V0 a
b1

log(r), if rG # r,

(5.39)

The pressure p satisfies the following Poisson equation:

where rG 5 Ï2aV0t 1 r 2
0 and r0 is the radius of the initial

=(b(x, y)=p) 5
1
r



r Sr
p
rD1

1
r 2

2p
u 2interface. Note that the pressure is continuous across the

circle r 5 a. C0 is chosen as

C0 5
t

rG

1 V0a log(rG) S 1
b2

2
1

b1D (5.40) 5 5V0 S6r
a2 2

6r
aD, if 0 # r # a,

0, if a , r,

(5.44)

so that [p]rG
5 tk 5 2t/rG . The pressure is continuous

across the inner boundary r 5 a surrounding the source. 5 2= ? u.
The constant C1 is chosen such that [p]r5a 5 0,

Thus we have the exact solution for the pressure p, the
C1 5 C0 2

V0a log(a)
b2

1
5V0a
6b2

. (5.41) velocity field u, and the location of the interface G(t).
Note that the benchmark problem described here is not

a trivial one. It is, indeed, the solution of the Hele–ShawThe velocity is determined from (4.26). In polar coordi-
flow with specific source and initial interface. Although wenates, we have
have to specify the boundary condition, it is consistent with
our discussion in the beginning of this section; see (4.35).
The solutions of the pressure and the velocity depend on

ur 5 2b
p
r

5 52V0 S2r 2

a2 2
3r
aD, if 0 # r # a,

aV0

r
, if a # r,

(5.42) the surface tension, curvature, radius of the initial circle,
and the injection rate.

Our numerical computations show that, for a short pe-
riod of time and modest surface tension, we can obtain
second-order accuracy for the pressure p, the interfaceuu 5

1
r

p
u

5 0. (5.43)
location r G , and the velocity vector (u, v). Table I shows
the result of the grid refinement analysis for the pressure
at the fixed time tout 5 0.1, where

E n
p 5 max

ij
up(xi , yj , tout ) 2 P n

iju ,

p(xi , yj , tout ) is the exact solution at time tout , P n
ij is the

computed solution at that time. The rate is calculated from
the expression

Rate 5
log(E n

p /E 2n
p )

log 2
.

FIG. 4. An expanding interface with a constant speed aV0 .
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FIG. 5. Benchmark problem computation with different surface tension. The grid size is 320 by 320. (a) d0 5 1.256 3 1022, the time is from
0 to 0.4; (b) d0 5 2.513 3 1023, the time is from 0 to 0.2; more fingers are developed.

Second-order accuracy is observed. The initial interface is The storage required for the GMRES(m) is of order
O(mN), where N $ m is the number of control points onr 5 0.5. The other parameters are:
the interface. Using the fast immersed interface method
[20], the number of iterations for the Poisson equationV0 5 0.25, b1 5 1, b2 5 100, a 5 0.1.
(2.5) never exceeded 60 in our testing problems. As long
as m is larger than the number of iterations, the truncated

The amalgamated surface tension corresponding to the GMRES(m) method is equivalent to the full version of
above parameters is about 2.5 3 1023. the GMRES method and the convergence speed is the

For a longer time computation, there will be some low same. We take m # 160 and N # 1280 in our simulations to
to intermediate frequency unstable modes if the surface get reasonably developed interfaces with available memory
tension is small enough to produce finger splitting. In this on the workstations. It is worthwhile to note that even
case, the roundoff errors associated with these modes be- with a modest workstation, our method can produce very
come significant. The re-initialization process only controls rich structures for the Hele–Shaw problem.
the roundoff errors of high frequencies, but it does not
remove effectively the roundoff errors for low to interme-

5.2. A Grid Refinement Analysis
diate modes. So the roundoff error perturbations in the

Now let us start with an interface which is a perturbedlow to intermediate modes can trigger instability to this
circle centered at the origin,problem. Figure 5 shows the computations with different

surface tensions. In Fig. 5a, the amalgamated surface ten-
sion is 1.256 3 1022 and the flow is more stable. The circular

r0 5 0.9 1 0.1 sin(3u), 0 # u # 2f. (5.45)shape is preserved for a relatively long time. In Fig. 5b,
the amalgamated surface tension is 2.513 3 1023 which is
small enough to produce more fingers. In this graph, we The flow is symmetric with respect to the y axis but not
also see some grid orientation effects in the computation. axi-symmetric. Figure 6 and Table II show the result of the
Such effects seem to be due to the source term rather than grid refinement analysis with fixed amalgamated surface
the boundary condition. In our discretization, we cannot tension. We start with a uniform grid 80 by 80, and double
have an exact axi-symmetric source. The source has more it twice to conduct the grid refinement analysis. Figure 6
influence in the vertical and horizontal directions than the qualitatively demonstrates convergence of our method as
diagonal directions. We will see later that such an effect we refine the mesh. Table II shows quantitatively the grid
also exists in other figures presented in this section. refinement analysis at three different times, against the

In our code, we have used the truncated GMRES(m) result computed on the finest mesh size 320 by 320, since
we do not know the exact solution.method to avoid running out of memory on workstations.
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TABLE IIThe way to calculate the errors is explained below. For
a closed curve, we can find its arc-length parameteriza- Grid Refinement Analysis at Three Different Time, t 5 0.52,
tion (x(s), y(s)) with the initial point on the x-axis, (x(0), 1.56, and 2.56 with the Amalgamated Surface Tension Being
y(0)) 5 (x0 , 0) with x0 . 0. Suppose the total arc-length d0 5 6.3 3 1023

of the curve is L, we divide the interval [0, L] into N
Time e80 e160 e80/e160equally spaced subintervals, with node points being si 5

iL/N, i 5 0, 1, ..., N 2 1. In this way we will have N equally
0.52 0.088191 0.019124 4.6115

spaced points X(si) 5 (x(si), y(si )) on the closed curve. 1.56 0.186631 0.042779 4.3626
Taking N 5 320, the errors in Table II typically is defined as 2.60 0.515839 0.119723 4.3086

el (t) 5 max
0#i#N21

uXt
l (si ) 2 Xt

320 (si )u,

However, we do not intend to discuss in depth the physicalwhere l 5 80 or l 5 160 and Xt
l(s) and Xt

320 (s) are the
meanings of the simulation here. More detailed discussioncomputed interfaces in the arc-length parameterizations
of the physical mechanism can be found, e.g., in [7, 13,with initial points in the positive direction of the x-axis,
24, 35].using the grids l by l and 320 by 320, respectively, at time

t. In other words, the error is the largest distance of the EXAMPLE 1. The initial interface in the polar coordi-
corresponding points of the two computed interfaces. Since nates is
we compare the error against the solution obtained from
the finest grid, 320 by 320, not the exact solution, the r 5 0.5 1 0.1 (sin(2u) 1 cos(3u)), 0 # u # 2f.
error ratios will also be different from the standard grid
refinement analysis. If the method is second-order accu- A similar example has been used in [13] with different
rate, the ratio of e80/e160 should be between 4 and 5. Simi- scaling. There is no particular symmetry on the motion.
larly, if the method is first order, the ratio should be be- Because of the surface tension, the interface remains
tween 2 and 3; see [18, 19] for the details. The results in smooth all the time. It is referred as q-pole data in [7].
Table II clearly indicate second-order accuracy for a fixed Figure 7 shows the expansion of a Hele–Shaw bubble with
time. On the other hand, we can also see some effects of different surface tensions at almost equally spaced time
the numerical dissipation on a coarse grid from Fig. 6. increments4 Dt p O(h2). We have not performed a system-

atical time stability analysis to quantify the relationship5.3. Further Experiments and Analysis
between Dt and h. The stiffness of our time integration is

Below we present some tests for the Hele–Shaw flow and less severe compared to the Lagrangian boundary integral
compare our results with those obtained in the literature. method because we use a fixed underlying grid. Moreover,

the re-initialization process plays a role of geometric regu-
larization and stabilizing high frequency components of
the solution.

The amalgamated surface tension varies from 6.3 3 1023

to 7.5 3 1024. In these calculations, we choose to plot the
numerical solution associated with each surface tension at
a time when either the number of control points has
reached 1280 or the updated interface gives a comparable
total arc length. The simulation displays much of the behav-
ior that has become known to the numerical analysts work-
ing on this subject. At early stage, three main ‘‘fjords’’
were developed on the interface corresponding to the three
Fourier modes in the initial interface. Then the three
‘‘fjords’’ separated into three expanding fronts. The ex-
panding fronts developed more fingers and petals de-
pending on the surface tension. For large surface tension,
only a few low frequencies, k between 1 and 4, are unstable
for each ‘‘fjord’’ in Fig. 7a. As we decrease the surface

FIG. 6. A grid refinement analysis with d0 5 6.3 3 1023. Convergence
is observed. On an 80 3 80 coarse grid, we observe some numerical dissi- 4 Our program sometimes automatically reduces the time step when

the normal velocity un becomes too large.pation.
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tension, more Fourier modes become unstable and we see Poisson equation because of the corners developed on the
interface if the surface tension is very small.more fingers and petals, see Figs. 7b and c. The petals

expand outwards and eventually tip-split into two petals The envelopes of the interface in a ‘‘fjord’’ are almost
the same, regardless of the surface tension; see Fig. 8a.while fingers have either stopped growing or have receded

and been absorbed back towards the main bulk of the This agrees with the result in [7]. The envelopes of the
interface will approach to a circle asymptotically.bubble.

For a short time, the shape of the interface varies little Figure 8b shows the expanding Hele–Shaw cell with the
initial interface in the polar coordinates,for different values of surface tension. The smaller the

surface tension, the quicker the secondary structure (or
finger tip-splitting) develops. As we decrease the physical r 5 0.4 1 0.05 (sin(2u) 1 cos(3u)), 0 # u # 2f. (5.46)
surface tension further, the numerical surface tension or
dissipation become more apparent, indicating the limita- In this example, the three ‘‘fjords’’ are hardly seen initially.

With the amalgamated surface tension d0 5 2.513 3 1023,tion on the real surface tension that we can resolve. But
without numerical dissipation, the interface will develop we still see the finger tip-splitting, but we cannot see clearly

the three separated fronts.unphysical cusps and it will take more time to solve the

FIG. 7. Expanding Hele–Shaw bubbles with different surface tension, the grid size is 320 by 320: (a) d0 5 6.3 3 1023; (b) d0 5 2.513 3 1023;
(c) d0 5 1.257 3 1023; (d) d0 5 7.5 3 1024.
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FIG. 8. (a) The snap shot of three expanding Hele–Shaw bubbles with difference surface tension. The envelopes of the interface are almost
the same. (b) The initial interface is r 5 0.4 1 0.05 (sin(2u) 1 cos(3u)) with d0 5 2.513 3 1023. There is no apparent formulation of the three fjords.

EXAMPLE 2. The initial interface in the polar coordi- order to resolve all the unstable modes. The largest unsta-
ble mode k is roughly given bynates now is

r 5 0.5 1 0.1 sin(3u), 0 # u # 2f.
(k 2 1)

f

2f
2

d0

R(t)
(k 2 1)k(k 1 1) P 0,

It is symmetric with respect to the y axis.
or

Figure 9 shows computational results with different sur-
face tension. We see pretty much the same behavior as we
discussed for Example 1. The initial interface is actually k P !fR(t)

2fd0
p

1
Ïd0

.
axi-symmetric. After a while, we can see the effect of the
roundoff errors and/or the truncation error from discretiz-
ing the source which is not exactly axi-symmetric. The In order to resolve this largest unstable mode, the h should
source has more influence in the vertical and the horizontal be bounded by
directions than in the diagonal directions. The interface
still roughly keeps y symmetry. The small deviation is due
to the roundoff errors. Initially, only three Fourier modes h #

1
k

P ! 2fd0

fR(t)
p Ïd0.

are visible, the magnitude of all other modes are zero.
After some time, the magnitude of some Fourier modes

The results presented in Fig. 7 and Fig. 9 are obtained withwill grow to a significant level and appear as new fingers.
h 5 0.03125 or h2 5 9.76 3 1024. That explains why weThere is a period of time that the magnitude of these
may not be able to fully resolve all the unstable modes inFourier modes is smaller than the machine precision, there-
Fig. 7d and Fig. 9d, where d0 5 7.5 3 1024.fore the low frequencies of the roundoff errors will have

an effect on these quantities. Since the roundoff errors are
EXAMPLE 3. This example shows a fully developednot exactly symmetric, such small perturbations will be

Hele–Shaw cell. The interface initially isamplified as the interface expands. We will lose the y sym-
metry to some extent which is visible in the pictures. Again

r 5 0.2 1 0.05 sin(3u), 0 # u # 2f. (5.47)we see the effect of numerical surface tension which deter-
mines how many unstable wave-numbers are allowed in
our computation, see Fig. 9d. Figure 10 shows the fully developed Hele–Shaw bubble

Using the linear stability growth rate (4.33), we can corresponding to the initial interface. We can see that many
fingers and petals are developed with time.roughly estimate how small the mesh size h should be in
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5.4. Time Allocation Analysis Case A. The original level set method which updates the
level set function in the entire domain. The re-initialization

We have done a lot of other tests with different parame-
process was carried out at each time level.

ters. Here we only present a few typical results. Most of
Case B. The tube width in the fast level method wasthe computations can be done within several hours on an

taken as 15h with the re-initialization process done at eachIBM RS6000 machine with multiple users. It is hard to
time step.compare the accuracy of our method with other methods

in the literature because of the different settings. But we Case C. The tube width was taken as 3h with the re-
have shown that our method is second-order accurate for initialization process done at each time step.
fixed time. Thus its accuracy is competitive with other Case D. The tube width was taken as 15h with the re-
methods. Using a suitable flag in most Fortran compliers, initialization process done every 15 steps.
we have been able to find out the time allocation for each
subroutine and function call. Below we present the time Table III gives a time allocation for the different cases.
allocation summary for Example 1 with a 160 by 160 grid. The same re-initialization code is used for all cases. The
The amalgamated surface tension was d0 5 6.3 3 1023 and time needed for solving PDEs includes the fast immersed

interface method for solving the Poisson equation withthe final time was t 5 0.25. We consider the following cases:

FIG. 9. Expanding Hele–Shaw bubbles with different surface tension from a y-symmetric initial bubble. The grid size is 320 by 320: (a) d0 5

6.3 3 1023; (b) d0 5 2.513 3 1023; (c) d0 5 1.257 3 1023; (d)0 5 7.5 3 1024.
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TABLE IIIdiscontinuous coefficients and the jump conditions (4.30)
and (4.31), the interpolation scheme for the velocity field Time Allocation in Percentage for Different Cases for Example
on the interface. The fast Poisson solver used is the subrou- 1 with 160 by 160 Grid and the Amalgamated Surface Tension
tine HWSCRT from FISH pack. It is a little bit slower d0 5 6.3 3 1023

than the FFT method. The time needed for the level set
Case Solve PDE Level set Re-initialization System calls Otherfunction includes extending the normal velocity to the tube

needed for the fast level set method and updating the level
A 69.9 5.5 9 13.6 2

set function for the next time level. The time used by the B 73.6 3.3 9 13.3 0.8
system calls includes the calls of built-in functions and C 79 2.2 6.9 10.8 1.1

D 82.4 2.2 0.5 14.4 0.5system-dependent routines. Our code was not optimal and
the percentage of the time allocation may not be exactly

Note. The final time is t 5 0.25.correct since some routines were shared by several major
components. However, Table III should give us a quantita-
tive picture of the time allocation of major components in The advantage of the boundary integral method is that
our method. it can be made arbitrarily high-order accurate and is free

Intuitively, it seems that a boundary integral method of numerical dissipation or dispersion. This property is
which updates one-dimensional interfaces would be faster very important when we try to study singularity formation
than the level set approach which updates two-dimensional of the interface as well as the nature of the singularity,
level set functions. From Table III we can clearly see that, see, e.g., [12–14]. This is especially evident when surface
even with the original level set method and the re-initializa- tension is small and new topological singularities may de-
tion process at every time step, the time needed to update velop. A grid-based method would require a sophisticated
the interface is just a small portion of the entire computa- adaptive grid refinement in order to produce the necessary
tion which is less than 15%. Usually the time needed for accuracy near the singularity. On the other hand, if the
the re-initialization process is more than that of updating purpose of the study is to obtain some qualitative under-
the level set function since the re-initialization process standing of the interface structure and their dynamical
contains several iterations of the level set method. With properties, a grid-based method can prove to be more
the fast level set approach, the time needed for the level robust. The main cost in the boundary integral method is

to evaluate the velocity integral at each time step, which isset approach and the re-initialization process decreases. In
an order O(N 2 ) operations by direct summation methods,most of our computations, we have used a modest tube
where N is the number of grid points along the interface.size, say 15h, so it is safe to do the re-initialization after
This difficulty can be greatly reduced by using the fastevery 10–15 time steps. The time needed for both processes
multi-pole summation method, see [13]. In this case, thewas only about 2.7%, which is more than five times faster
operation count is reduced to O(N). However, from thethan the original level set method with re-initialization at
practical consideration, the constant in O(N) is stillevery time step.
quite large.

It is also interesting to consider the vortex sheet method
[24, 35], which is based on the vorticity variables and dis-
crete circular arcs of the interface and for which the main
cost is to update the location of vortices and update the
circulation until the velocities converge. In our method,
the corresponding computation is to solve the Poisson
equation with piece-wise constant coefficients using the
fast immersed interface method. This is probably the main
saving of the entire algorithms. From the time allocation
analysis we also find out that the effort needed near the
interface for the immersed interface method is only about
25–30% of the fast Poisson solver for a 160 by 160 grid.
The ratio will decrease as we increase the number of grid
points. This explains why the immersed interface method
offers an efficient approach for interface problems.

6. CONCLUSIONS

FIG. 10. An expanding Hele–Shaw bubble with initial interface: r 5
In this paper, we present a new numerical method which0.2 1 0.05 sin(3u), 0 # u # 2f, d0 5 1.257 3 1023. The grid size is 320

by 320. combines the immersed interface method with the level
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equations with discontinuous coefficients and singular sources, SIAMset formulation for moving interface problems. Several
J. Numer. Anal., 31, 1019 (1994).ingredients of our methods such as the reconstruction of

16. R. J. LeVeque and Z. Li. Simulation of bubbles in creeping flowthe interface, extending the normal velocity, and the bilin- using the immersed interface method, in Proc. Sixth International
ear interpolation to restrict a grid function to a lower di- Symposium on Computational Fluid Dynamics, 1995. pp. 688–693.
mensional space, can be applied to other problems as well. 17. R. J. LeVeque and C. Zhang. Immersed interface methods for wave

equations with discontinuous coefficients, wave motion, [in press]Our method is second-order accurate unless the interface
18. R. J. LeVeque and Z. Li. Immersed interface method for stokes flowdevelops singularities. Numerical experiments for Hele–

with elastic boundaries or surface tension, SIAM J. Sci. Stat. Comput.Shaw flow demonstrate the efficiency of this method. Al-
[in press]

though there is a limitation on the problems that can be 19. Z. Li. The Immersed Interface Method—A Numerical Approach for
resolved by this method due to numerical dissipation, we Partial Differential Equations with Interfaces, Ph.D. thesis, University

of Washington, 1994.can see a lot of applications for well-posed and stable
20. Z. Li. A fast iterative algorithm for elliptic interface problems, SIAMmoving interface problems, especially those involving to-

J. Numer. Anal, [to appear]pological changes. Even for ill-posed and unstable prob-
21. Z. Li. Immersed interface method for moving interface problems.lems, our method can be quite robust as we have demon-

Numerical Algorithms, [to appear]
strated for the Hele–Shaw flow.

22. Z. Li. A note on immersed interface methods for three dimensional
elliptic equations. Computers Math. Appl., 31, 9 (1996).
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